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Suppose that appropriately substituted helical aromatic mol-
ecules, like their planar analogues (1),1 organized spontaneously
in the liquid phase into columnar aggregates (2). The structures
would be novel. Moreover, if the structures promoted electronic

interaction between constituent molecules, the optical and
possibly other properties of the materials might be novel as well.
To test this idea,7 and8 in Scheme 1 were synthesized optically
active, and some of their characteristics were analyzed. Struc-
ture8was chosen because its preparation could be modeled on
an efficient synthesis of a related helicene2 and because donor-
acceptor interactions between the electron-rich inner rings of
one molecule and the electron-poor outer rings of another might
stabilize a columnar stack.3 The experiments show that8 does
aggregate spontaneously and that the aggregates exhibit specific
rotations that are gigantic.
Scheme 1 outlines the syntheses; the accompanying support-

ing information provides the details both of these steps and of
the preparation of the starting bis-enolether,3, from dehy-
droacetic acid. Both enantiomers of7 and 8 were prepared.
Both diasteriomers of5were analyzed by1H NMR spectroscopy
to be>98% diastereomerically pure.
Evidence that molecules of8 aggregate includes the follow-

ing. Solutions of8, like solutions of aggregating molecules
that have nonchiral chromophores attached to chiral groups,4

exhibit circular dichroisms that are significantly enhanced by
concentration. Figure 1a shows this effect forn-dodecane
solutions in which the concentrations of8 are 2.1× 10-2 M
and 2.1× 10-5 M. Also, for 8, as for aggregating nonhelical
molecules,5 different UV absorption (Figure 1b) and fluores-

cence emission (Figure 1c) spectra are displayed by concentrated
and dilute solutions.6 In addition, a 2.1× 10-2 M solution of
8 in n-dodecane, like a similarly concentrated aqueous solution
of the aggregating pseudoisocyanine,7 is highly viscous. More-
over, Professor Peter Collings at Swarthmore College found that,
for light near the absorption maximum, enhanced scattering
attributable only to aggregates occurs when the concentration
exceeds 1.5× 10-2 M.8 Finally, Figure 2 shows a striking
manifestation of aggregation, the formation of fibers.9 The
fibers, which are displayed sandwiched between crossed po-
larizers, grow quickly and spontaneously when samples of8
are cooled from a temperature at which they had become
isotropic and free flowing (ca. 208°C).11 They are ca. 3µm
in diameter.12 How their properties depend on their orientation
remains to be analyzed, but the solutions described above are
isotropic (at least optically).13

Not all helicenes surrounded by alkyl groups display the
properties of aggregation described for8. Hexaether diacetate
7, for example, does not. At room temperature, its UV
absorption, fluorescence emission, and CD spectra inn-dodecane
are essentially the same whether the concentrations are 2.1×
10-2 M or 2.1 × 10-5 M,14 possibly because intermolecular
donor-acceptor interactions are absent or because increased
steric crowding at the terminal rings destabilizes its aggregates.
It is unclear what the structures of8’s aggregates are, but

the direction in which concentration shifts8’s longest wave-
length UV absorption maximum (to the red,5b,d,e,j,15from 325
to 342 nm) implies that the transition dipoles excited in the
aggregates are aligned approximately head-to-tail,16 not head-
to-head as in aggregates whose formation shifts UV absorptions
to the blue.4c,d,5a,f-j This is reasonable if the electric vector of
the light absorbed at ca. 333 nm is polarized along the axis of
a helix similar to2. The parallel alignment of the transition
dipoles would also account for the absence of splitting17-20 in
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the CD spectrum of the concentrated solution,21 and the stacked
structure would account for the aromatic and quinone1H NMRs
shifting upfield by 0.09( 0.02 ppm when the concentrated
solution is compared with the dilute.22,23 The much greater
breadth of the red-shifted absorption and emissions in8 than
in so-calledJ-aggregates5b,e might be expected if numerous
stacks assembled into larger structures,24 possibly ropes, and
the spectrum varied with the location of the stack in the
assembly.25

Whatever the nature of the aggregation, when it occurs,8’s
specific rotation increases enormously. While concentrating

n-dodecane solutions of7 from 2.1× 10-5 M to 2.1× 10-2 M
increases their [R]D from 410 to 413 deg cm2/g, similarly
concentrating solutions of8 increases their [R]D from 678 to
8400 deg cm2/g. More significantly, while neat samples of7
(an isotropic lemon-yellow liquid) rotate plane-polarized light
at the D-wavelength (589 nm) 11 deg/mm,26 corresponding to
an [R]D of 1300 deg cm2/g,27 neat8 (a red translucent wax)
rotates it 1400 deg/mm,26 corresponding to an [R]D of 170 000
deg cm2/g.27,28 The figures for8 are enormous and comparable
only to the rotations plane-polarized light undergoes when
traveling the helix axis of cholesteric liquid crystals.29
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Scheme 1

Figure 1. (a) CD spectra (ordinate on the left displaying molar
ellipticities) and (b) UV absorption spectra (ordinate on the right
displaying molar extinction coefficients) of8 in n-dodecane: (s) when
the concentration is 2.1× 10-2 M and the path length 10µm; (- - -)
when the concentration is 2.1× 10-5 M and the path length 10 mm.
The inset (c) displays emission spectra (excitation at 325 nm) of these
solutions. The path length was 10µm.

Figure 2. Optical micrograph of8, sandwiched between crossed
polarizers, after it had been cooled to 195°C from the isotropic liquid.
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